ISBN/价格: | 978-7-5635-6330-2:CNY75.00 |
---|---|
作品语种: | chi |
出版国别: | CN 110000 |
题名责任者项: | 演化机器学习/.徐华编著 |
出版发行项: | 北京:,北京邮电大学出版社:,2021.4 |
载体形态项: | 224页:;+图:;+26cm |
丛编项: | 大数据和人工智能技术丛书 |
一般附注: | 高等院校信息类新专业规划教材 |
相关题名附注: | 英文并列题名取自封面 |
提要文摘: | 近年来, 演化计算作为计算智能中传统的优化技术, 已经广泛应用于求解各种数据挖掘问题, 形成了一种基于遗传的机器学习新范式学习分类器。一方面, 在真实场景中采集的原始数据不可避免地包含着冗余乃至噪声属性的信息, 这些不相关的特征将对学习分类器算法的学习性能与计算效率造成负面影响。另一方面, 学习分类器以显式规则表示目标概念, 在监督学习或强化学习机制的基础上, 利用演化算法对规则空间进行搜索, 从而完成学习任务。规则空间的有效搜索是影响学习分类器性能的关键。针对上述问题, 本书的主要探讨内容: 一是学习分类器与特征选择方法, 重点是做两者的整合研究, 将学习分类器的分类模型构建过程与特征选择的特征子集搜索过程统一集成在基于遗传的机器学习框架下, 同时改善分类算法的预测性能与运行效率; 二是从提高规则空间的搜索质量出发, 着眼于分类问题, 介绍了基于分布估计算法的学习分类器。 |
并列题名: | Evolutionary machine learning eng |
题名主题: | 机器学习 |
中图分类: | TP181 |
个人名称等同: | 徐华 编著 |
记录来源: | CN 百万庄 20230315 |